学习资料网 >地图 >教案 >

解方程设计教案

解方程设计教案

时间:2025-05-08 作者:学习资料网

相关推荐

解方程设计教案(热门15篇)。

作为一位杰出的老师,常常要写一份优秀的教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。那么应当如何写教学设计呢?下面是小编整理的解方程教学设计,希望对大家有所帮助。

解方程设计教案 篇1

1、教学资源分析

采用多媒体课件,导学案进行教学。

2、教学内容分析

在初中阶段,不等式位于一次方程(组)之后,它是进一步探究现实世界数量关系的重要内容。不等式的研究从最简单的一元一次不等式开始,一元一次不等式及其相关概念是本章的基础知识。解任何一个代数不等式(组)最终都要化归为解一元一次不等式,因而解一元一次不等式是一项基本技能。另外,不等式解集的数轴表示从形的角度描述了不等式的解集,并为解不等式组做了准备。本节内容是进一步学习其他不等式(组)的基础。

解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的性质,逐渐将不等式化为x>a或x

●重点

一元一次不等式的解法。

●难点

不等式性质3在解不等式中的运用是难点

3、教学目标分析

●目标

1.使学生了解一元一次不等式的概念;

2.使学生掌握一元一次不等式的解法,并能在数轴上表示其解集。

3.经历探究一元一次不等式解法的过程,培养学生独立思考的习惯和合作交流的意识。

●目标解析

达到目标1的标志是:学生能说出一元一次不等式的特征,会解一元一次不等式,并能在数轴上表示出解集。

达到目标2的标志是:学生能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据不等式的性质,将一元一次不等式逐步化简为x>a或x

达到目标3的标志是:学生能够独立思考后积极参与学习中去,在轻松,没有负担在氛围中完成对新知的学习。

4、学习者特征分析

本节课是在学生了解不等式的解和解集的意义,了解不等式解集的数轴表示方法,能利用不等式的性质对不等式进行简单变形的基础上学习本课的。现在学生已经具备了一定的自主学习的能力,本节的学习中我以问题串的形式贯穿整个教学过程,引导学生对比一元一次不等式和一元一次方程的有关内容,尤其是一元一次不等式和一元一次方程解法的比较,有利于对新知识的掌握,同时培养了学生类比的学习方法。

5、教学过程设计

<一>、问题导入,探索新知1

问题1:举出一元一次方程的例子?

【设计意图】复习一元一次方程的概念,便于对比探索一元一次不等式概念。这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的类比和探究能力。

问题2:

将学生举出的一元一次方程中的等号改写成不等号。请学生观察有哪些共同的特征?

通过以上问题归纳得到一元一次不等式的概念:只含一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

【设计意图】问题2采用自主发现的教学方法引导学生从众多的不等式中,通过归纳其共同特点,得到一元一次不等式的概念,培养了学生观察、归纳和语言表达能力。

问题3:学生举一元一次不等式的'例子,学生判断。

师:判断下列各式是否是一元一次不等式?

①②③④⑤

【设计意图】此题让学生运用概念识别一元一次不等式,考察学生是否达成教学目标1。

<二>、探索新知2

通过前面的学习,我们知道解不等式的目的,就是将不等式变形成x>a或x

【设计意图】让学生明白不管一元一次不等式有多复杂,最终都可以转化为x>a或x

师:那怎么来解一元一次不等式呢?有具体的解法吗?请看下题

(1)解方程解不等式

2(1+x)=3 (1) 2(1+x)<3>

(2)师:对比不等式(2)与2(1+x)<3>

学生回答不等式含有分母

师:怎样变形使不等式不含分母?

师生共同去分母解(2)题

师:通过(1)、(2)题的学习你有什么发现?

生:解一元一次不等式的解题步骤和解一元一次方程的解题步骤相同,都是:去分母,去括号,移项,合并同类项,系数化为1.

师:在解(1)和(2)题的过程中注意些什么?

生:系数化为1时,注意未知数系数的符号,未知数的系数是正数,则不等号的方向不变,若未知数的系数是负数,则不等号的方向改变。

【设计意图】根据学生已经会解一元一次方程的实际情况,学生主动地参“探究——讨论——交流——总结”等数学活动,把一元一次方程和一元一次不等式进行了对比,实现了知识的自然迁移,使学生在自主探索和合作交流的过程中不知不觉地学到了新知识,理解并掌握了解一元一次不等式的一般步骤,教学重点得以基本达成,教学难点也取得相应突破。

练习小明解不等式的过程如下,请找出错误之处,并说明错误的原因。

解:2x-2+2<3x>

2x-3x<-2+2

-x<0>

【设计意图】“去分母”和“化系数为1”这两步都是学生平时爱出错的地方,让学生对照解一元一次不等式的一般步骤仔细找出错误并说明原因,对提高计算能力很有帮助。

练习:解一元一次不等式?,并把它的解集在数轴上表示出来.

【设计意图】学生独立按照解一元一次不等式的步骤解不等式。

<三>归纳总结

本节课你学会了些什么?

解一元一次不等式和解一元一次方程有哪些相同和不同之处?

【设计意图】通过问题引导学生再次回顾本节课。

<四>布置作业

教科书习题9.2第1,2,3,题

<五>目标检测

解一元一次不等式?,并把它的解集在数轴上表示出来.

6、教学评价的设计

本节课主要以问题串的形式贯穿整个教学过程,学生任务明确。教师在每一个教学环节中灰渗透了类别的学习思想,这使学生在学习新知的过程中利用正迁移,在轻松的氛围中完成了对新知的学习。课上回答的问题及解题在正确率以小组的得分的形式计入到小组教学成绩日常评比中。

解方程设计教案 篇2

学习目标:

1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义。

2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。

3、通过探讨一元一次不等式组的解法以及解集的'确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。

4、体验不等式在实际问题中的作用,感受数学的应用价值。

学习重点:

一元一次不等式组的解法

学习难点:

一元一次不等式组解集的确定。

一、学前准备

【回顾】

1.解不等式 ,并把解集在数轴上表示出来。

【预习】

1、 认真阅读教材34-35页内容

2、____________ _ 叫做一元一次不等式组。

______ _______叫做一元一次不等式组的解集。

叫做解不等式组。

4、求下列两个不等式的解集,并在同一条数轴上表示出来

二、探究活动

【例题分析】

例1. (问题1)题中的买5筒钱不够,买4筒钱又多的含义是什么?

例2. (问题2)题中的相等关系是什么?不等关系又是什么?

例3. 解不等式组

【小结】

不等式组解集口诀

同大取大,同小取小,大小小大中间找,大大小小解不了

一元一次不等式组解集四种类型如下表:

不等式组(a

(1)xb

xb 同大取大

(2)x

x

(3)xax

a

(4)xb

无解 大大小小解不了

【课堂检测】

1、不等式组 的解集是( )

A. B. C. D.无解

2、不等式组 的解集为( )

A.-1

3、不等式组 的解集在数轴上表示正确的是( )

A B C D

4、写出下列不等式组的解集:(教材P35练习1)

三、自我测试

1.填空

(1)不等式组x-1 的解集是_ __;

(2)不等式组x-2 的解集 ;

(3)不等式组x1 的解集是__ __;

(4)不等式组x-4 解集是___ ___。

2、解下列不等式组,并在数轴上表示出来

(1)

四、应用与拓展

若不等式组 无解,则m的取值范围是 ____ _____.

解方程设计教案 篇3

【教学内容】

教材第78页例4,“做一做”和练习十七5~10题。

【教学目标】

1.学生通过自主探索、交流互助学会根据两个未知量之间的关系,列方程解答含有两个未知数的实际问题。

2.学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力。

3.培养学生的主体意识、创新意识、合作意识,以及分析、观察能力和表达能力。

4.让学生体验到生活中处处是数学,体验数学的应用价值和数学学习的乐趣。

【重点难点】

正确设未知数,找出等量关系列方程解决问题。

【教学准备】

教具:地球仪多媒体课件

【复习导入】

1.填空。

(1)学校科技组的男同学人数是女同学的3倍。设女同学有x人,则男同学有()人;设男同学有x人,则女同学有()人。

(2)学校书法组有女同学x人,男同学人数是女同学的2.5倍。男同学有()人,一共有()人,男同学比女同学多()人。

2.看图列方程,并求出方程的解。

3.导入新课:这节课我们继续学习列稍复杂的方程解决实际问题。(出示课题)

【新课讲授】

1.情景导入。

课件出示:转动着的地球。

师:同学们,这就是我们人类赖以生存的地球,地球表面大部分的地方都被海洋所覆盖,海洋的面积要远远超出陆地的`面积。因此,也有人把地球称为“水球”,所以,地球看上去是漂亮的深蓝色。那么你们想知道地球上的陆地面积、海洋面积究竟有多大吗?好,下面老师给你们提供一些信息。

2.出示例4。

地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。海洋面积和陆地面积分别是多少亿平方千米?

3.分析,理解题意,找等量关系,列方程。

师:请同学们先思考下面的问题:

(1)题中有几个未知量?

(2)设谁为x比较合适?为什么?

(3)问题中包含有怎样的等量关系?

(4)怎样列方程?

汇报交流,总结:

(1)题中有两个未知量,陆地面积和海洋面积。海洋面积约为陆地面积的2.4倍。

(2)根据“海洋面积约为陆地面积的2.4倍”设未知数,陆地面积是x,海洋面积是2.4x。

出示:(线段图)

(3)根据“地球的表面积为5.1亿平方千米”,得到等量关系是海洋面积+陆地面积=地球表面积。

(4)列方程是:x+2.4x=5.1

讲解:用方程解,一般设“一倍量”为x,那么“几倍量”就可以用几x表示, 根据题中另一个条件找数量间的相等关系,然后列方程。

课件出示:(配合教师小结出示)

解:设陆地面积为x亿平方千米。

那么海洋面积可以表示为2.4x亿平方千米。

海洋面积+陆地面积=地球表面积

x+2.4x=5.1

4.解方程。

师:会解这个方程吗?试一试吧。

汇报,交流。

(1+2.4)x=5.1(追问:根据是什么?)

3.4x=5.1

3.4x÷3.4=5.1÷3.4

x=1.5

讨论:1.5表示什么意思?海洋面积怎样求?

学生自由发言。

小结:求海洋面积有两种方法。

方法一:5.1-1.5=3.6(亿平方千米)

方法二:2.4x=2.4×1.5=3.6(亿平方千米)

5.检验。

师:我们做得对吗?如何检验呢?

学生讨论,汇报。

小结:检验有两种方法。

第一种是用代入方程检验的方法:

1.5+2.4×1.5=5.1

第二种:用检查答案是否符合已知条件的方法来检验。

1.5+3.6=5.1

6.即时巩固。

解方程:x+1.5x=5x-0.5x=30

【课堂作业】

完成课本第81页练习十七的第5~8题。

【课堂小结】

提问:这节课你学习了什么?题目中有两个未知数,怎样列方程解答?

小结:第一,两个未知数怎么办?可以先选择其中一个设为x,列方程解,再求另一个。

第二,两个已知数条件怎么用?可以把其中一个用来写含有字母的式子,表示另一个未知数,另一个用来列方程。

第三,怎样验算?可以通过列式计算,检验两个得数的和及倍数关系是否符合已知条件。

【课后作业】

完成教材第81页练习十七第9~10题。

解方程设计教案 篇4

这节课在学生已有的解方程、分析应用题数量关系等知识的基础上进行教学,使学生掌握列方程解应用题的方法,为以后学习更深入的知识打下基础,同时培养学生积极思考问题,热爱自然科学的品质。

一、教学目的:

1、使学生掌握列方程解两步应用题的方法。

2、总结列方程解应用题的一般步骤。

3、培养学生分析数量关系的能力,提高学生在列方程解应用题时分析等理关系的能力。教学重点:分析应用题里的等量关系,会列方程解应用题。

二、教学难点:分析应用题里的等量关系。

教具准备:小黑板、写好题目的纸条等。

三、教学教法:

针对本课的知识特点,采用了下面几种方法进行教学:讲授法、对比法、分组讨论法。在准备阶段,让学生独立完成习题,学生根据以前的知识可以用算术方法和列方程的方法来解答此题,从而为今天学习较复杂的列方程解应用题打下基础。在新课阶段,应用讲授法和对比法,让学生观察、比较例1和准备题的内在联系,找出数量间的相等关系,列出等量关系式,再根据等量关系式列出方程,从而掌握本课的知识重点,同时也能理解掌握本课的难点。在小结阶段,采用分组讨论法,让学生通过分组讨论得出列方程解应用题的一般步骤,完成这一课的教学任务。在练习阶段,教师灵活采用各种教学方法和手段进行巩固练习。

四、教学步骤。

在教学步骤上,我是这样进行教学的:

(一)、准备。

教师出示复习题,学生读题后说:“请同学们用两种方法解答这道题。”

商店原来有一些饺子粉,卖出35千克以后,还剩40千克。这个商店原来有多少千克饺子粉?

解法一:35+40=75(千克)

解法二:设原来有X千克,

X-35=40

X=40+35

X=75

答:原来有75千克饺子粉。

(二)、新课。

教师出示例1,请学生思考:这道题和上道题有什么相同点和不同点?

商店原来有一些饺子粉,每袋5千克,卖出7袋以后,还剩40千克。这个商店原来有多少千克饺子粉?

想:原有的重量-每袋的重量X卖出的袋数=剩下的重量

X千克5千克7袋40千克

解:设原有X千克。

X-5X7=40

X-35=40

X=40+35

X=75

答:原来有75千克饺子粉。

教师:“用方程解答应用题也要检查答案对不对。检验时,要先检查方程是不是符合题意,然后再把解得的X的值代入原方程,看解得对不对。请你用上面的方法检验例1的答案对不对。”

教师出示例2:

小青买4节五号电池,付出8.5元,找回了0.1元。每节五号电池的价钱是多少元?

想:付出的钱数-4节电池的钱数=找回的钱数

8.5元4X0.1

解:设每节五号电池的价钱是X元。

8.5-4X=0.1

4X=8.5-0.1

4X=8.4

X=8.44

X=2.1

答:每节五号电池的价钱是2.1元。

想一想:这道题还可以怎样想?列出方程来。

教师:从上面的例题可以看出,列方程解应用题的特点是,用字母表示未知数,根据题目中数量之间的相等关系,列出一个含有未知数的等式(也就是方程),再解答出来。

(三)、小结。

教师:大家分组来总结列出方程解应用题的一般步骤。

1、弄清题意,找出未知数,并用X表示;

2、找出应用题中数量之间的相等关系,列方程;

3、解方程;

4、检验,再写出答案。

把例1中的前两个条件改写成“商店原来有15袋饺子粉,卖出35千克以后”,问题改成“每袋饺子粉重多少千克”,该怎样解?

(四)、练习。

1、下面两题,先找数量间的相等关系,再把每个方程补充完整。

(1)小明买4支铅笔,每支X元,付给营业员3.5元,找回0.1元。

解方程设计教案 篇5

教学目标:1.理解掌握方程、方程的解、解方程等概念。

2.理解方程与等式的关系。

3.会用加、减、乘、除各部分间关系解一步简易方程并会检验。

4.培养观察、抽象、总结、概括能力、发展思维。

5.使学生感受数学知识间的联系,渗透转化的数学思想。

教学重点:使学生初步掌握解方程的方法和书写格式,并会检验。

教学难点:帮助学生建立“方程”的概念,并会应用。

关 键:帮助学生建立“方程”的概念,并会应用。

教学过程:

一、导入新课

上一节课,我们学习了什么?

复习天平保持平衡的规律及等式保持不变的规律。学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。

二、新知学习。

1、 解决问题。

出示P57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?

杯子与水的质量加起来共重250克。

能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。

全班交流。可能有以下四种思路:

(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。

(2)利用加减法的关系:250-100=150。

(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。

(4)直接利用等式不变的'规律从两边减去100。

对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。

2、 认识、区别方程的解和解方程。

得出方程的解与解方程的含:

像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。

而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。

这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?

方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。

3、 练习。(做一做)

齐读题目要求。

怎么判断X=3是不是方程的解?将x=5代入方程之中看左右两边是否相等,写作格式是:方程左边=5x

=5×3

=15

=方程右边

所以,x=3是方程的解。

用同样的方法检查x=2是不是方程5x=15的解。

三、作业。

独立完成练习十一第4题,强调书写格式。

四、小结。

通过这节课学到了什么?还有什么问题?

解方程设计教案 篇6

教学目的:

(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。

(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。

(3)结合教学,培养学生事实求是的学习态度,求真务实的.科学精神,养成良好的学习习惯。渗透一一对应的数学思想。

教学重点及难点:

理解方程的意义,掌握方程与等式之间的关系。

教具准备:

天平一只,算式卡片若干张,茶叶筒一只。

教学过程:

一、游戏导入,揭示课题

1、师生共同做个游戏:用手指指尖顶住直尺,使直尺能保持平衡,感知平衡。

说说生活中,你还见过哪些平衡现象?

2、勤劳聪明的人类根据平衡原理制成了天平,今天我们要借助天平来学习新的知识《解简易方程》。(板书课题)看了课题,同学们想知道些什么?

二、教学新课

1、方程的意义

(1)认识天平:简单介绍天平的结构和使用方法。

(2)操作天平:

a、一边放两个50克的砝码,另一边放100克的砝码,天平平衡。请学生用一个式子来表示这种关系。(板书:50+50=10050x2=100)

b、一边放一个20克的砝码和一个茶叶筒,另一边放100克砝码,天平平衡。茶叶筒的重量不知道,可以怎么表示?你也能用一个式子来表示这种关系吗?

(板书:x+20=100)

c、让学生操作天平,出现不平衡现象,也用式子表示。

(3)出示天平称东西的示意图,让学生用式子表示。(出示卡片)

30+20=502x+50>10080<2x

3x=180100+20<100+50100+2x=50x3

x—18=2460÷20=3x÷11=5

(4)组织学生观察以上式子。

请同学们观察以上式子,想想能不能将这些式子分分类,并说出你分类的标准。(小组讨论,写下来)

按符号的不同分成两大类(出示实投):

80<2x2x+50>100100+20<100+50

指出:这些用大于、小于号连成的式子左右两边不相等,就叫做不等式。

谁再来说几个等式?同桌互相说几个等式。

30+20=503x=180100+2x=50x3

x—18=2460÷20=3

指出:这些用等号连接成的表示两边相等的式子都叫等式。(板书:等式)

(5)观察以上等式,你能不能再分分类,也说一说你分类的标准?(同桌讨论)

解方程设计教案 篇7

【教学内容】

教材第78页例4,“做一做”和练习十七5~10题。

【教学目标】

1.学生通过自主探索、交流互助学会根据两个未知量之间的关系,列方程解答含有两个未知数的实际问题。

2.学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力。

3.培养学生的主体意识、创新意识、合作意识,以及分析、观察能力和表达能力。

4.让学生体验到生活中处处是数学,体验数学的应用价值和数学学习的乐趣。

【重点难点】

正确设未知数,找出等量关系列方程解决问题。

【教学准备】

教具:地球仪多媒体课件

【复习导入】

1.填空。

(1)学校科技组的`男同学人数是女同学的3倍。设女同学有x人,则男同学有()人;设男同学有x人,则女同学有()人。

(2)学校书法组有女同学x人,男同学人数是女同学的2.5倍。男同学有()人,一共有()人,男同学比女同学多()人。

2.看图列方程,并求出方程的解。

3.导入新课:这节课我们继续学习列稍复杂的方程解决实际问题。(出示课题)

【新课讲授】

1.情景导入。

课件出示:转动着的地球。

师:同学们,这就是我们人类赖以生存的地球,地球表面大部分的地方都被海洋所覆盖,海洋的面积要远远超出陆地的面积。因此,也有人把地球称为“水球”,所以,地球看上去是漂亮的深蓝色。那么你们想知道地球上的陆地面积、海洋面积究竟有多大吗?好,下面老师给你们提供一些信息。

2.出示例4。

地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。海洋面积和陆地面积分别是多少亿平方千米?

3.分析,理解题意,找等量关系,列方程。

师:请同学们先思考下面的问题:

(1)题中有几个未知量?

(2)设谁为x比较合适?为什么?

(3)问题中包含有怎样的等量关系?

(4)怎样列方程?

汇报交流,总结:

(1)题中有两个未知量,陆地面积和海洋面积。海洋面积约为陆地面积的2.4倍。

(2)根据“海洋面积约为陆地面积的2.4倍”设未知数,陆地面积是x,海洋面积是2.4x。

出示:(线段图)

(3)根据“地球的表面积为5.1亿平方千米”,得到等量关系是海洋面积+陆地面积=地球表面积。

(4)列方程是:x+2.4x=5.1

讲解:用方程解,一般设“一倍量”为x,那么“几倍量”就可以用几x表示, 根据题中另一个条件找数量间的相等关系,然后列方程。

课件出示:(配合教师小结出示)

解:设陆地面积为x亿平方千米。

那么海洋面积可以表示为2.4x亿平方千米。

海洋面积+陆地面积=地球表面积

x+2.4x=5.1

4.解方程。

师:会解这个方程吗?试一试吧。

汇报,交流。

(1+2.4)x=5.1(追问:根据是什么?)

3.4x=5.1

3.4x÷3.4=5.1÷3.4

x=1.5

讨论:1.5表示什么意思?海洋面积怎样求?

学生自由发言。

小结:求海洋面积有两种方法。

方法一:5.1-1.5=3.6(亿平方千米)

方法二:2.4x=2.4x1.5=3.6(亿平方千米)

5.检验。

师:我们做得对吗?如何检验呢?

学生讨论,汇报。

小结:检验有两种方法。

第一种是用代入方程检验的方法:

1.5+2.4x1.5=5.1

第二种:用检查答案是否符合已知条件的方法来检验。

1.5+3.6=5.1

6.即时巩固。

解方程:x+1.5x=5x-0.5x=30

【课堂作业】

完成课本第81页练习十七的第5~8题。

【课堂小结】

提问:这节课你学习了什么?题目中有两个未知数,怎样列方程解答?

小结:第一,两个未知数怎么办?可以先选择其中一个设为x,列方程解,再求另一个。

第二,两个已知数条件怎么用?可以把其中一个用来写含有字母的式子,表示另一个未知数,另一个用来列方程。

第三,怎样验算?可以通过列式计算,检验两个得数的和及倍数关系是否符合已知条件。

【课后作业】

完成教材第81页练习十七第9~10题。

解方程设计教案 篇8

教学目标:

1、初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

2、初步理解等式的基本性质,能用等式的性质解简易方程及检验的方法。

3、培养的分析能力应用所学知识解决实际问题的能力。

4、初步学会检验某个数是否是方程的解,培养学生检验的习惯,提高计算能力。帮助养成自觉检验的良好习惯。在教学中渗透环保教育。

教学重点:理解并掌握解方程的方法。

教学难点:理解并掌握解方程的方法。

教学准备:教学课件。

教学流程:

一、复习铺垫:

1、教师:前面我们学了方程的意义,你还记得什么叫方程吗?(含有未知数的等式叫方程。)怎样判断一个式子是不是方程?

2、判断下面哪些是方程吗?

(1)a+24=73(2)4x<36+17(3)234÷a>12

(4)72=x+16(5)x+85(6)25÷y=0.6

3、教师:上节课我们还通过玩天平游戏认识了等式的基本性质,还记得等式的基本性质吗?

4、新课引入:这节课,我们就来应用等式的基本性质去解简易方程。(板书课题:解简易方程)在学习解简易方程前,我们先来认识两个概念----方程的解和解方程。

二、探究新知:

认识方程的解和解方程:

1、看图写方程。

出示上节课用天平称一杯水的情景图。(100+X=250)

2、求方程中的未知数

教师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?

学生交流后汇报:

方法一:根据加减法之间的关系250-100=150,所以X=150

方法二:根据数的组成100+150=250,所以X=150

方法三:100+X=250=100+150,所以X=150

方法四:假如在方程左右两边同时减去100,那么也可得出X=150

3、引出方程的解和解方程的概念。

教师:使方程左右两边相等的未知知数的值,叫做方程的解。像上面,x=150就是方程100+x=250的解。而求方程的解的过程叫做解方程。

4、辨析方程的解和解方程两个概念。

教师:方程的解和解方程这两个概念有什么区别?

5、完成课本57页做一做:X=3是方程5X=15的解吗?X=2呢?

探究例1:

1、出示例1图,让学生说图意后列出方程。

2、课件出示天平图,引导学生利用天平保持平衡的道理理解解方程的方法。

3、学生独立完成解方程,并板示,着重强调解方程的步骤和书写格式。

x+3=9

解:x+3-3=9-3

x=6

4、引导学生检验方程的解。

探究例2:

1、引入和出示例2:前面我们利用天平保持平衡的道理求出了方程x+3=9的解,下面我们再利用天平保持平衡的道理来求出方程3X=18的.解,同学们有信心吗?

2、课件出示天平图,引导学生利用天平保持平衡的道理理解解方程的方法。

3、学生独立完成解方程。

3x=18

解:3x÷3=18÷3

x=6

方法总结:

1、交流讨论:如果方程两边同时加上或乘以一个数,左右两边会相等吗?

2、总结:利用天平保持平衡的道理(也就是等式的基本性质)等式两边都加上或减去(乘或除以相同的数),可以求出方程的解。

三、应用巩固:

1、完成课本59页“做一做”的第1题,先找到等量关系,再列出方程并解方程。

2、解方程。

x+3.2=4.6x-1.8=4x-2=15

1.6x=6.4x÷7=0.3x÷3=2.1

3、我会选

(1)32+χ=76的解是()

A、χ=42B、χ=144C、χ=44

(2)χ-12=4的解是()

A、χ=8B、χ=16C、χ=23

(3)5χ=60的解是()

A、χ=65B、χ=55C、χ=12

(4)χ÷20=5的解是()

A、χ=15B、χ=100C、χ=4

4、解决问题。

教师:请同学们认真观察图,你能根据题意列出方程并解方程吗?

四、全课小结、课外延伸:

教师:这节课你有什么收获?请同学们思考生活中哪些问题可以运用解方程和知识帮我们解决问题,把你想到的和同伴一起分享。

解方程设计教案 篇9

教学目标:了解一元一次不等式的概念,掌握一元一次不等式的解法。

教学重点:是掌握解一元一次不等式的步骤.

教学难点:是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.

教学过程: 一、问题导入

复习:1、不等式的基本性质有哪些?什么是一元一次方程?并举出两个例子。

2、观察不等式x+3<5与x<2,说明解x<2是x+3<5依据什么变形得到的?

3、解一元一次方程:6x+ 5=7-2x,目的是为了与下面所学的解一元一次不等式进行类比,找到它们的联系与区别。

二、指导自学,小组合作交流

请同学们根据以下提问进行自学,先个人思考,后小组合作学习。

1、观察下列不等式,说一说这些不等式有哪些共同特点?

(1)2x+5 ≥8 (2)x+1≤-4 ( 3)x<2 (4)6-3x>4 3(x+1)≤0

观察上面不等式有哪些共同特点,让学生通过交流,再总结一元一次不等式的概念。老师板书定义。

2、让学生举出2或3个一元一次不等式的例子,小组交流。

3、让学生通过比较解一元一次方程:6x+ 5=7-2x的解法试解一元一次不等式:6x+ 5<7-2x,并将解集在数轴上表示出来。

4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?

5、解下列不等式,并把它们的解集在数轴上表示出来。

(1)3-x < 2x +9 (2)2-4(x-1)> 3(x+2) -x

(3)(x-1)/ 3≥(2-x)/2+1

总结:解一元一次不等式的依据和解一元一次不等式的步骤。

三、互动交流,教师点拨

(一)、学生易出错的问题和注意的事项:

1、确定一个不等式是不是一元一次不等式,要抓住三个要点:左右两边都是整式,只有一个未知数,未知数的次数是1。

2、对于(1),让学生说明不等式3-x < 2x + 9的每一步变形的依据是什么,特别注意的是:解不等式的移项和解方程的`移项一样。即移项要变号(培养学生运用类比的数学思想)。

3、不等式两边同时除以(-3)时,不等号的方向改变。

2、重点点拨(2)和(3),先让学生到黑板上板演。老师再讲评。

(2)易出错的地方是:去括号时漏乘,括号前是负号,去掉括号后括号里的项没变号,还有移项没有变号;(3)易出错的地方是:去分母时漏乘无分母的项。

3、归纳解一元一次不等式的步骤(与解一元一次方程的步骤类比):去分母,去括号,移项,合并同类项,系数化为1。(在系数化为1这一步要特别提醒学生注意当系数为负数时,要记住改变不等号的方向。)

四、 巩固练习

1、判断下列不等式是不是一元一次不等式,为什么?

(1)2/x—3<5x+3 (2) 5x+3<0 2="">x–1 (4) x(2x+1)

2、解下列不等式,并把它们的解集在数轴上表示出来

(1)3x–8<5x+12(2)2(x–1)≥x+3(3)x/5≥1+(x–3)/ 2

3、[思考]当x取何值时,代数式(x–2)/2的值比(3x+1)/3的值大?

小结:(1)不等式两边同时除以负数时,不等号的方向要改变。(2)注意去括号时不要漏乘,括号前是负号,去掉括号后括号里的项要变号,还有移项一定要变号(3)去分母时不要漏乘无分母的项。

解方程设计教案 篇10

教学目标:

1.经历解方程基本思路是把“复杂”转化为“简单”,把“新”转化为“旧”的过程.进一步理解并掌握如何去分母的解题方法.

2.通过解方程时去分母过程,体会转化思想.

3.进一步体会解方程方法的灵活多样.培养解决不同问题的能力.

4.培养学生自觉反思求解和自觉检验方程的解是否正确的.良好习惯,团结合作的精神.教学重点:解方程时如何去分母.

教学难点:解方程时如何去分母.

教学方法:引导发现

教学设计:

一、用小黑板出示一组解方程的练习题.

解方程:

(1)8=7-2y;

(3)4x-3(20-x)=3;

1、自主完成解题.

2、同桌互批.

3、哪组同学全对人数多.

(根据学生做题情况,教师给予评价).

二、出示例题7,鼓励学生到黑板板演,教师给予评价.

一名同学板演,其余同学在练习本上做.

针对学生的实际,教师有目的引导学生如何去掉分母.去分母时要引导学生规范步骤,准确运算.

三、组织学生做教材159页“想一想”,鼓励并引导学生总结解一元一次方程有哪些步骤.分组讨论、合作交流得出结论:方程两边都乘以所有分母的最小公倍数去掉分母.

四、出示例题6,并鼓励学生灵活运用解一元一次方程的步骤解方程.

出示快速抢答题:有几处错误,请把它们—一找出来并改正.

①先自己总结.

②互相交流自己的结论,并用语言表述出来.

教师给予评价.

引导学生总结本节的学习内容及方法.

五、出示随堂练习题(根据学生情况做部分题或全部题).

①自主完成解方程

②互相交流自己的结论,并用语言表述出来.

③自觉检验方程的解是否正确.

(选代表到黑板板演).

①学生抢答.

②同组补充不完整的地方.

③交流总结方程变形时容易出现的错误.

①独立完成解方程.

②小组互评,评出做得好的同学.

六、小结

①做出本节课小结共交流.

(2)5x-2=7x+8;(4)-2(x-2)=12.

②说出自己的收获及最困惑的地方

八、板书设计

解方程设计教案 篇11

一、复习引入

1、已知方程 x2—ax—3a=0的一个根是6,则求a及另一个根的值。

2、有上题可知一元二次方程的系数与根有着密切的关系。其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有根简洁的关系?

3、有求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1= ,x2= 、观察两式左边,分母相同,分子是—b+√b 2—4ac与—b—√b 2—4ac。两根之间通过什么计算才能得到更简洁的关系?

二、探索新知

解下列方程,并填写表格:

方 程x1x2x1+x2x1、 x2

x2—2x=0

x2+3x—4=0

x2—5x+6=0

观察上面的表格,你能得到什么结论?

(1)关于x的方程 x2+px+q=0(p,q为常数,p2—4q≥0)的两根x1,x2与系数p,q之间有什么关系?

(2)关于x的`方程ax2+bx+c=0(a≠0)的两根x1, x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?

解下列方程,并填写表格:

方 程x1x2x1+x2x1、 x2

2x2—7x—4=0

3x2+2x—5=0

5x2—17x+6=0

小结:1、根与系数关系:

(1)关于x的方程x2+px+q=0(p,q为常数,p2—4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=—p, x1、 x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。)

(2)形如的方程ax2+bx+c=0(a≠0),可以先将二次项系数化为1,再利用上面的结论。

即: 对于方程 ax2+bx+c=0(a≠0)

∵ ∴

∴ ,

(可以利用求根公式给出证明)

例1:不解方程,写出下列方程的两根和与两根积:

例2:不解方程,检验下列方程的解是否正确?

例3:已知一元二次方程的两个根是—1和2,请你写出一个符合条件的方程、(你有几种方法?)

例4:已知方程 的一个根是 ,求另一根及k的值、

变式一:已知方程 的两根互为相反数,求k;

变式二:已知方程 的两根互为倒数,求k;

三、巩固练习

1、已知方程 的一个根是1,求另一根及m的值、

2、已知方程 的一个根为 ,求另一根及c的值、

四、应用拓展

1、已知关于x的方程 的一个根是另一个根的2倍,求m的值、

2、已知两数和为8,积为9,求这两个数、

3、 x2—2x+6=0的两根为x1,x2,则x1+x2=2,x1x2=6、是否正确?

五、归纳小结

1、根与系数的关系:

2、根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零、

六、布置作业

1、不解方程,写出下列方程的两根和与两根积。

(1)x2—5x—3=0 (2)9x+2= x2 (3) 6 x2—3x+2=0 (4)3x2+x+1=0

2、 已知方程x2—3x+m=0的一个根为1,求另一根及m的值、

3、 已知方程x2+bx+6=0的一个根为—2求另一根及b的值、

解方程设计教案 篇12

学习内容:人教版五年级上册p57-59页

学习目标:

1、通过操作、演示,进一步理解等式的性式,并能用等式的性质解简单的方程,在解方程的过程中,初步理解方程的解与解方程。

2、通过创设情境,经历从具体抽象为代数问题的过程,渗透代数化思想,并通过验算,促进良好学习习惯的养成。

3、在观察、猜想、验证等数学活动中,发展学生的数学素养。

学习重点:用等式的的性质解方程,理解算理

学习过程:

一、创设情境,引出方程

1、研究例1:

猜球游戏:出示一个乒乓球盒,猜里面有几个球?引导学生用字母来表示球数?

导语:要想精确知道多少个球?再给大家一些信息(课件出示:天平左边盒子和二个球,右边有七个球)

设问:能用一个方程来表示吗?板书x+2=6

二、探究算理

设问:你们知道x等于多少吗?那这个答案4你们是怎么想出来的吗?说说你们的想法?

预设:a、7-4=2;b、4+2=7,所以x=4,c、左右二边都拿掉二个乒乓球,右边还剩下4个,所以x=4

研究第三种想法:设问:左右同时拿个二个乒乓球天平会怎么样?

学生上台用天平演示

请学生们把刚才的过程用式子表示出来,板书:x+2-2=6-2

追问:你怎么想到是拿到二个乒乓球,而不是拿到一个或者三个呢?

尝试验算:板书:左边=4+2=6=右边,所以我们就说x=4是方程的解,板书方程的解,尝试说说方程的解;刚才我们求方程的解的过程叫做解方程。(可以自学书本)

讲解解方程的书写格式(与天平相对应)

小结:刚才我们用了好多方法来解方程,重点研究了第三种解方程的方法,这种方法我们用到了什么知识?课件再次演示后,得出方程的两边同时去掉相同的数,左右两边仍相等。

尝试:解方程:x-1=3,想一想:如果要用天平的乒乓球,如何来表示出这个方程?

指名摆一摆,学生尝试解决,并用操作来验证

2、研究例2:3x=18

学生尝试后出示:3x÷3=12÷3

用小棒操作后交流后想法:方程的左右二同时除以一个相同的数(零除外),左右二边仍旧相等。

展示,课件演示后小结:方程的左右二边可以同时除以相同的数(零除外),左右二边仍旧相等,追问得到还可以同时乘以一个相同的数

总结:解方程时,我们都是想使方程的一边只剩下一个x,而且在这个过程中还要使方程保持平衡,我们可以采用……

三、巩固练习

1、p59页1

2、后面括号中哪个是x的值是方程的解?

(1)x+32=76 (x=44, x=108)

(2)12-x=4 (x=16, x=8)

3、解方程

p59页第2题的前面四题,要求口头验算

四、总结:

五、机动:研究练习2中的第二题,怎么用今天的方法来解方程。

让"天平"植入解方程中

《解简易方程》是数与代数领域中的一个重要内容,是“代数”教学的起始单元,对于渗透与发展学生的代数化思想有着极其重要的作用。本节课教材在编写上为了实现中小学的衔接,改变了以往利用“加减法逆运算和乘除法逆运算”而是利用天平原理即等式的性质来解方程,由于学生在前面已经积累了大量的感性经验(逆运算)来解方程,对于今天运用天平的原理来解方程,造成了极大的干扰,所以在本节课中我力图直观,让学生在直观的操作与演示中自主建构。同时借助观察、操作、猜想与验证,一方面来促使学生进一步理解等式的性质,能利用等式的性质来解方程,同时也让学生抽象方程,解释算理中来经历代数的过程,发展学生的数感及数学素养。

1、在具体情境中理解算理,经历代数的过程。

新课程在数与代数的编排中最大的变化是取消了单独的应用题编排,而是把应用与计算紧密的结合起来编排,每一个内容都是以主题图的形式来呈现,主要的是目的'是让学生在具休的情境中理解算理,同时也在计算教学中培养学生的应用意识。本节课属于典型的计算课,所以算理与算法是二条主线,今天的算法主要是突破学生原有的认知,能够利用天平的原理来解方程,所以理解算理,让学生体验到解方程只要使天平的一边剩下一个未知数,但要在这个变化中必须使天平保持平衡,可以通过在天平的左右二边同时加上、减去、乘以或者除以相同的数是本节课的重点。我通过创设情境,通过天平上的乒乓球的移动和补凑,来理解算理,而后利用小棒和棋子自己来解释说明算理,突显出本节课的重点。同时在情境的创设中,通过猜球,与天平的呈现信息,让学生经历由直观的生活抽象为化数化的过程,从中渗透化数化的思想。

2、在直观操作中掌握方法,发展数学素养。

新课程标准指出“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内 容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。”在本节课中,通过充分的直观,利用学生熟悉的乒乓球、小棒等素材,力图把方程建构于天平之中,通过导入时从直观到抽象,再到尝试时从抽象的式子分别直观的乒乓球与小棒来表示,打通天平与方程之间的关系,在学生的头脑中建立深刻的模像。同时,在让学生用自己的生活,用自己的图画,用自己的操作解释、验证中发展学生的数学素养。

二点困惑:

1、纵观学生的起点,他们已经具有丰富的生活经验与知识背景来解简单的方程,所以在教学中运用“逆运算”来解方程对于采用天平的原理来解方程造成了相当的冲突,部分学生虽然对于运用天平原理来解方程已经十分理解,但他们还是不愿意用这种方法,主要的原因是他们体验不到这种方法的优越性,所以如何在本节课中让学生体验到天平原理的优越性,从而自愿的采用这种方法,没有好的策略?

2、教材中回避了a-x=b与a/x=b二种方程,但在实践中经常要碰到,教师如何来解决这个问题?

一点遗憾:这节课在构思加入了大量的操作活动和直观材料,主要的目的是让学生解方程的过程中在学生的头脑中植入天平,并给学生以自我解释与验证的机会,但操作的作用在每一次实践中都没有得到最大化的发挥,如何来提高操作的效性,让操作的目标更明确,是以后这节课研讨中重点商切的问题。

解方程设计教案 篇13

一、教材分析

(一)教材的地位和作用

“一元二次方程的解法”是初中代数的方程中的一个重要内容之一,是在学完一元一次方程、因式分解、数的开方、以及前三种因式分解法、直接开方法、配方法解一元二次方程的基础上,掌握用求根公式解一元二次方程,是配方法和开平方两个知识的综合运用和升华。通过本节课的教学使学生明确配方法是解方程的通法,同时会根据题目选择合适的方法解一元二次方程。一元二次方程的解法也是今后学习二次函数和一元二次不等式的基础。

(二)教学目标

知识技能方面:理解一元二次方程求根公式的推导过程,会用公式法解一元二次方程。

数学思考方面:通过求根公式的推导过程进一步使学生熟练掌握配方法,培养学生数学推理的严密性和逻辑性以及由特殊到一般的数学思想。

解决问题方面:结合用公式法解一元二次方程的练习,培养学生快速准确的运算能力和运用公式解决实际问题的能力。

情感态度方面:让学生体验到所有的方程都可以用公式法解决,感受到公式的对称美、简洁美,渗透分类的思想;公式的引入培养学生寻求简便方法的探索精神和创新意识。

(三)教学重、难点

重点:掌握用公式法解一元二次方程的一般步骤;会熟练用公式法解一元二次方程。

难点:理解求根公式的推导过程和判别式

二、教学法分析

教法:本节课采用引导发现式的自主探究式与交流讨论结合的方法;在教学中由旧知识引导探究一般化问题的形式展开,利用学生已有的知识、多交流、主动参与到教学活动中来。

学法:让学生学会善于观察、分析讨论和分类归纳的方法,提出问题后,鼓励学生通过分析、探索、尝试解决问题的方法,铜锁亲自尝试,使学生的思维能力得到培养。

三、过程分析

本节课的教学设计成以下六个环节:复习导入——呈现问题——例题讲解——巩固练习课时小结——布置作业。

1、复习引入:

这节课,我首先从旧知

问题(1)用配方法解方程2x28x90的练习引入,

问题(2)总结配方法的一般步骤(化一般方程——二次项系数为1——配方使左边为完全平方式——两边开方——求解)。

设计意图:让学生巩固昨天的知识,进一步熟练钥匙并为今天做学的内容解一般形式的一元二次方程做好铺垫,达到“温故而知新”。

2、问题呈现:

你能用配方法解一般形式的一元二次方程吗?

此处由一个特殊的旧知引导学生推导出一般的结果,希望学生学会由特殊性到一般化的思想。为降低b2b24ac推导的难度,化简、移项、配方、变形由我和学生一起探究完成,到(x这步时,提出 )

问题:①此时可以直接开平方吗?

②等号右边的值需要满足什么条件?为什么?

③等号右边的值只跟哪个式子有关?

设计意图:师生共同完成前四步,这样与利于减轻学生的思维负担,便于将主要精力放在后边公式的推导上。通过小组的讨论有利于发挥学生的互帮互助,借助小组的交流完善答案,关键让学生会对掌握b24ac与方程有无实数根的关系,这里分类思想也是今后常用的一种数学思想,b24ac进行讨论,

应加以强化。

最终总结出:

当b24ac<0时,原方程无实数解。

当b24ac≥0时,原方程有实数解,

再进一步谈论:b24ac=0与b24ac>0时,两个解区别?

(b24ac=0时,两个相等的实数解,b24ac>0时,两个不等的实数解)

由此可知,方程有解还是无解是由b24ac决定,即b24ac是方程解的判别式。

同时,方程的解是可以将a、b、c

的值带入公式x根公式”,利用它解一元二次方程叫做公式法。

3、例题讲解

例4:用公式法解下列方程

总结步骤:

1、把方程公成一般形式,并写出a,b,c的值。

2、求出b24ac的值

4、写出方程的解:x1= ,x2=

设计意图:规范解题格式,让学生体会数学课中的严谨的逻辑推理;体验并掌握公式法解一元二次方程的步骤,从中让学生领会到由特殊到一般,一般到特殊的辩证思想。

4、巩固练习

解下列一元二次方程:①x2x60

②4x2x90

③x2100

设计意图:

(1)熟悉公式法,强化解题格式,

(2)及时发现错误及时解决。

例5:解方程:x(x1)(x2)

化简得12212x3x40 2

强调:

①当方程不是一般形式时,应先化成一般形式,再运用求根公式。

②你还能用其他方法解本例方程吗?

设计意图:明确一元二次方程解题方法的多样性,让学生在你观察分析题目后灵活合理的选择解题方法,培养学生的.多样化思维,提高解题能力和解题的速度。

5、课时小结

(1)学生作知识总结:本节课通过配方法求解一般形式的一元二次方程的根,推出了一元二次方程的求根公式,并按照公式法的步骤解一元二次方程。

(2)我扩展:(方法归纳)求根公式是一元二次方程的专用公式,只有在确定方程是一元二次方程时才能使用,是常用而重要的一元二次方程的万能求根公式。

6、布置作业:面向全体学生,注重个体差异,加强作业的针对性,分层布置作业,适应新课标,让不同的学生各其所长,因材施教的要求,提高他们的学习的兴趣和自信心。

四、板书设计

本节课内容较为单一,通过“层层设疑”、“复习回顾”等环节促进学生的思考和探究。

通过比较合理的问题设计巩固练习、小组讨论等形式给学生提供了充分的展示机会,强化了学生的运算能力,有利于学生掌握基本技能。

解方程设计教案 篇14

【教学内容】

教材第69页例4、例5、“做一做”和练习十五的第8-14题。

【教学目标】

1.进一步掌握转化的思路,正确解答二步计算的方程。

2.在掌握ax±b=c和a(x±b)=c的方程解法的基础上,学会找出等量关系,用列方程的方法解答二步计算的文字题。

3.养成分析的习惯,训练严谨的学习态度。 培养学生用不同的方法解决问题的思维方式。

【重点难点】

1.掌握ax±b=c和a(x±b)=c的方程解法。

2.看图找出等量关系,并根据等量关系列出方程解决问题。

【教学准备】

多媒体课件。

【复习导入】

1.解下列各方程,并说明解题的思路与解法根据。

(1)3.8-x=2.9(2)5x=12.5

学生独立完成后相互交流。

小结:这两道题是最基础的解方程题目。根据等式的性质,就可以求解了。

2.出示例4的情景图,学生思考:怎样列方程呢?

学生相互讨论。

这道题与以前学过的解方程有什么不一样的呢?(学生回答)那这节课我们一起来继续学习解方程。

板书课题。

【新课讲授】

1.教学例4。

(1)出示例4情景图。

(2)如何列出方程呢?

学生讨论,汇报。

引导分析:先找出题中的已知与未知数量关系,列出等量关系式,再根据等量关系列出方程:

等量关系式:图中有3盒铅笔和4支铅笔一共是40支,3盒铅笔+4支铅笔=40支铅笔,已知每盒铅笔x支,三盒共3x支。

列方程为:3x+4=40

(3)追问:这种方程该怎么解呢?

学生尝试解题,然后说出解题思路。

引导学生小结:可以把3x看作一个整体,就是三盒铅笔的总数,再利用等式的`性质,左右同时减去4,就将方程变成了我们学过的一般方程:3x=36,然后左右同时除以3,得x=12。

完整的解题过程:

解:3x+4=40

3x+4-4=40-4

3x=36

3x÷3=36÷3

x=12

答:每盒铅笔有12支。

学生写出检验过程。

(4)这样一类方程应该如何解呢?

学生讨论后汇报交流。

教师引导小结:先把含有未知数的那一项看作是一个整体,利用等式的性质把方程变成只有两项,再求解。

2.教学例5。

(1)出示例5:解方程2(x-16)=8。

(2)观察、讨论:这个方程能不能利用例4所学的方法解呢?

学生讨论后交流。

教师引导:可以把(x-16)看作是一个整体。

学生尝试解题,指定一名学生板演,集体讲评。

解方程2(x-16)=8。

解:2(x-16)÷2=8÷2把什么当作一个整体?

x-16=4

x-16+16=4+16

x=20

学生完成检验过程。

(3)想一想:还有没有其他的解法呢?

学生分组讨论,然后汇报。

引导小结:可以先把2(x-16)变成2x-32,及时提问:这一步运用什么定律?(学生回答:乘法分配律)那方程就变成了2x-32=8,再利用例4的方法解。

学生独立写出解答过程。

解方程2(x-16)=8。

解:2x-32=8运用了什么运算定律?

2x-32+32=8+32

2x=40

2x÷2=40÷2

x=20

检验:方程左边=2(20-16)

=40-32

=8=方程右边

所以,x=20是方程的解。

(4)引导学生小结:在解较复杂的方程时,可以先将一个式子当作一个整体,变成了一般方程再利用等式的性质求解,记住解完方程后要检验。

【课堂巩固】

完成课本第69页“做一做”。

学生独立思考,独立完成解答过程,然后师生共同分析、讲解。

【课堂小结】

提问:同学们,这一节课你又学会了哪些类型的方程?有什么收获呢?

小结:这节课,我们知道在解较复杂的方程时,可以先将一个式子当作一个整体,变成了一般方程再利用等式的性质求解,记住解完方程后要检验。

【课后作业】

完成教材第71~72页练习十五第8~14题。

解方程设计教案 篇15

一、教学内容:

人教课程标准实验版第九册P59例2。

二、教学目标:

1、运用知识迁移,结合直观图例,应用等式的性质,让学生自主探索和理解简易方程的解法。

2、通过多种形式的分层练习,让学生较熟练掌握简易方程的解法。

3、帮助学生养成自觉检验的学习习惯。

4、培养学生的分析能力和应用能力,渗透代数的数学思想和方法。

三、教学重难点:

应用等式的性质,理解和较熟练掌握简易方程的'解法。

四、教学过程:

(一)知识铺垫。

1、什么叫方程的解?什么叫解方程?

2、解方程:X+15=48X—3.2=2.6

解答后说一说(1)你解这两个方程的依据和方法是什么?

(2)说出等式的另外一个基本性质。

(计算机分别演示等式的两个基本性质。注意“不为0”)

揭示课题:这节课我们就继续利用等式的性质来解简易方程。

板书:解简易方程。

(二)新知学习。

1、教学例2。

(1)出示情景图。

(2)说出图意并列出方程。(从图中你知道了哪些信息?会列方程吗?)

(3)怎样用天平图表示这个方程?(左边是3个X,右边是18)

(4)解方程的目的是求X的值,要使天平的左边只剩下一个X,而天平又保持平衡,两边该怎样分?(两边同时平均分成3份)

计算机动画演示:天平两边各剩一份。问:每份怎样?(分别平衡)

(5)反映在方程上,就是我们学过的等式的哪个基本性质呢?

(6)自主探索,试解方程并检验(会用这个基本性质解方程吗?试试看!)。

评讲(强调书写格式和自觉检验)。

2、指导阅读书P59,质疑。

3、想一想、试一试:解方程X÷3=2。1

自己说一说解题的依据和方法。(强调口头检验)

4、小结:我们已掌握了解方程的一般方法,你认为解方程时需要注意什么?

(下面就检验一下你们是否真正掌握了解方程的方法。)

(三)基础练习设计:

1、说出下列方程的解法。

2、选择正确答案。(全班用手势表示)

(1)X+8=30①X=22②X=38

说说你是怎样判断的?

指出:平时解方程后都可以自觉用代入法进行检验。

3、对比练习。

4、解决问题。(列出方程并解答。)

(1)每个福娃X元,买5个共花80元。

(上面两个问题解决得很好,接下来我们进行一个检测性的`分组接力竞赛,有信心赢吗?)

5、学习检测。(接力竞赛)

(四)课堂小结。

这节课学习了什么?

解简易方程的依据和方法是什么?

(看来同学们对今天所学的知识掌握得不错。是的,解方程的依据就是等式的基本性质。我们解完方程后还要养成自觉检验的习惯,一般可以用代入法进行检验。下面我们继续挑战一道有难度的拓展题。)

本文来源:http://www.xxy333.com/x/39996.html